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Abstract. We analyze the behavior of the eigenvalues and eigenfunc-
tions of the Laplace operator with homogeneous Neumann boundary con-
ditions when the domain is perturbed. We show that if Ω0 ⊂ Ωε are
bounded domains (although not necessarily uniformly bounded) and we
know that the eigenvalues and eigenfunctions with Neumann boundary
condition in Ωε converge to the ones in Ω0, then necessarily we have that

|Ωε \Ω0| → 0 while it is not necessarily true that dist(Ωε, Ω0)
ε→0−→ 0. As

a matter of fact we will construct an example of a perturbation where

the spectra behave continuously but dist(Ωε, Ω0)
ε→0−→ +∞.

1. Introduction

This paper is concerned with the behavior of the eigenvalues and eigenfunc-
tions of the Laplace operator in bounded domains when the domain undergoes
a perturbation. It is well known that if the boundary condition that we are
imposing is of Dirichlet type, the kind of perturbations that we may allow in
order to obtain the continuity of the spectra is much broader than in the case of
Neumann boundary condition. This is explicitly stated in the pioneer work of
Courant and Hilbert [5] and it has been subsequently clarified in many works,
see [4, 2, 6] and reference therein among others. See also [8] for a general text
on different properties of eigenvalues and [9] for a study on the behavior of
eigenvalues and in general partial differential equations when the domain is
perturbed.

In particular, with Dirichlet boundary condition we may consider the case
where the fixed domain is a bounded “smooth” domain Ω0 ⊂ RN , N ≥ 2, and
the perturbed domain is Ωε in such a way that Ω0 ⊂ Ωε, that is we consider
exterior perturbation of the domain. We may have perturbations of this type
where |Ωε \ Ω0| ≥ η for some fixed η > 0 and still we have the convergence
of the eigenvalues and eigenfunctions. Moreover, we may even have the case
|Ωε \ Ω0| → +∞ and still we have the convergence of the eigenvalues and
eigenfunctions.
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To obtain and example of this situation is not too difficult. If we consider
for instance Ω ⊂ R2, given by Ω0 = (0, 1)× (−1, 0) and

Ωε(a) = {(x, y) : 0 < x < 1,−1 < y < a(1 + sin(x/ε))} ⊃ Ω0

where a > 0 is fixed, we can easily see that the eigenvalues and eigenfunctions
of the Laplace operator with Dirichlet boundary condition in Ωε converge to the
ones in Ω0. Moreover |Ωε| = |Ω0|+

∫ 1

0
a(1 + sin(x/ε))dx ∼ |Ω0|+ a for ε small

enough. Moreover, it is not difficult to modify the example above choosing the
constant a dependent with respect to ε in such a way that a(ε)→ +∞ and such
that we still get that the eigenvalues and eigenfunctions in Ωε(a(ε)) converge
to the ones in Ω0 and |Ωε(a(ε)) \ Ω0| → +∞. This example shows that the
class of perturbations that we may allow to get the “spectral convergence” of
the Dirichlet Laplacian is very broad and that knowing that the eigenvalues
and eigenfunctions of the Dirichlet Laplacian converge does not have many
“geometrical” restrictions for the domains.

The case of Neumann boundary condition is much more subtle. As a matter
of fact, for the situation depicted above it is not true that the spectra converge.
So we ask ourselves the following questions: if we have a domain Ω0 and
consider a perturbation of it given by Ω0 ⊂ Ωε, where we assume that all the
domains are smooth and bounded although not necessarily uniformly bounded
on the parameter ε, then if we have the convergence of the eigenvalues and
eigenfunctions,

(Q1) should it be true that |Ωε \ Ω0|
ε→0−→ 0?

(Q2) should it be true that dist(Ωε,Ω0) = supx∈Ωεdist(x,Ω0) ε→0−→ 0?

We will see that the answer to the first question is Yes and, surprisingly,
the answer to the second one is No.

Observe that, as the example above shows, the answer to both questions for
the case of Dirichlet boundary condition is No.

In Section 2 we recall a result from [1, 3] which provides a necessary and
sufficient condition for the convergence of eigenvalues and eigenfunctions when
the domain is perturbed. In Section 3 we provide an answer to question (Q1)
and in Section 4 we provide an answer to question (Q2).

2. Characterization of spectral convergence of Neumann
Laplacian

In this section we give a necessary and sufficient condition for the con-
vergence of the eigenvalues and eigenfunctions of the Laplace operator with
Neumann boundary conditions. We refer to [1] and [3] for a general result in
this direction, even in a more general context than the one in this note. In
our particular case, we will consider the following situation: let Ω0 be a fixed
bounded smooth (Lipschitz is enough) open set in RN with N ≥ 2 and let Ωε
be a family of domains such that for each fixed 0 < ε ≤ ε0, Ωε is bounded and
smooth with Ω0 ⊂ Ωε.

Let us define now what we mean by the spectral convergence. For 0 ≤
ε ≤ ε0, we denote by {λεn}∞n=1 the sequence of eigenvalues of the Neumann
Laplacian in Ωε, always ordered and counting its multiplicity, and we denote
by {φεn}∞n=1 a corresponding set of orthonormal eigenfunctions in Ωε. Also,
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since we are considering domains which vary with the parameter ε and we will
need to compare functions defined in Ω0 and in Ωε, we introduce the following
space H1

ε = H1(Ω0) ⊕ H1(Ωε \ Ω̄0), that is χ ∈ H1
ε if χ|Ω0 ∈ H1(Ω0) and

χ|(Ωε\Ω̄0) ∈ H1(Ωε \ Ω̄0), with the norm

‖χ‖2H1
ε

= ‖χ‖2H1(Ω0) + ‖χ‖2H1(Ωε\Ω̄0) .

We have that H1(Ωε) ↪→ H1
ε and in a natural way we have that if χ ∈

H1(Ω0) via the extension by zero outside Ω0 we have χ ∈ H1
ε . Hence, with

certain abuse of notation we may say that if χε ∈ H1
ε , 0 ≤ ε ≤ ε0, then

χε
ε→0−→ χ0 in H1

ε if ‖χε − χ0‖H1(Ω0) + ‖χε‖H1(Ωε\Ω0)
ε→0−→ 0.

Definition 2.1. We will say that the family of domains Ωε converges spectrally
to Ω0 as ε→ 0 if the eigenvalues and eigenprojectors of the Neumann Laplacian
behave continuously at ε = 0. That is, for any fixed n ∈ N we have that
λεn → λ0

n as ε → 0, and for each n ∈ N such that λ0
n < λ0

n+1 the spectral
projections P εn : L2(RN )→ H1(Ωε), P εn(ψ) =

∑n
i=1(φεi , ψ)L2(Ωε)φ

ε
i , satisfy

sup{‖P εn(ψ)− P 0
n(ψ)‖H1

ε
, ψ ∈ L2(RN ), ‖ψ‖L2(RN ) = 1} ε→0−→ 0 .

The convergence of the spectral projections is equivalent to the following:
for each sequence εk → 0 there exists a subsequence, that we denote again
by εk and a complete system of orthonormal eigenfunctions of the limiting
problem {φ0

n}∞n=1 such that ‖φεkn − φ0
n‖H1

εk
→ 0 as k →∞.

In order to write down the characterization, we need to consider the follow-
ing quantity

τε = min
φ∈H1(Ωε)

φ=0 in Ω0

∫
Ωε

|∇φ|2∫
Ωε

|φ|2
. (2.1)

Observe that τε is the first eigenvalue of the following problem with a combi-
nation of Dirichlet and Neumann boundary conditions:

−∆u = τu , Ωε \ Ω̄0 ,

u = 0 , ∂Ω0 ,

∂u

∂n
= 0 , ∂Ωε \ ∂Ω0 .

We can prove the following,

Proposition 2.2. A necessary and sufficient condition for the spectral con-
vergence of Ωε to Ω0 is

τε
ε→0−→ +∞ . (2.2)

We refer to [1] and [3] for a proof of this result.

Remark 2.3. The fact that Ω0 ⊂ Ωε can be relaxed. It is enough asking
that for each compact set K ⊂ Ω0 there exists ε(K) such that K ⊂ Ωε for
0 < ε ≤ ε(K), see [3].
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3. Measure convergence of the domains

In this section we provide an answer to the first question. Observe that in
Proposition 2.2 we do not require that |Ωε \ Ω0|

ε→0−→ 0. However, we have the
following

Corollary 3.1. In the situation above if Ωε converges spectrally to Ω0, then
necessarily |Ωε \ Ω0|

ε→0−→ 0.

Proof. This result is proved in [3] but for the sake of completeness and since
it is a simple proof, we include it in here.

If this were not true then we will have a positive η > 0 and a sequence εk → 0
such that |Ωεk \ Ω0| ≥ η. Let ρ = ρ(η) be a small number such that |{x ∈
RN \ Ω0, dist(x,Ω0) ≤ ρ}| ≤ η/2. This implies that |{x ∈ Ωεk , dist(x,Ω0) ≥
ρ}| ≥ η/2. Let us construct a smooth function γ with γ = 0 in Ω0, and
γ(x) = 1 for x ∈ RN \ Ω0 with dist(x,Ω0) ≥ ρ. Then obviously γ ∈ H1(Ωεk)
with ‖∇γ‖L2(Ωεk ) ≤ C and ‖γ‖L2(Ωεk ) ≥ (η/2)

1
2 . This implies that τεk is

bounded. Hence it is not true that τε
ε→0−→ +∞ and therefore, from Proposition

2.2, we do not obtain the spectral convergence.

In particular, this result implies that the answer to question (Q1) is af-
firmative. That is, if we have the convergence of Neumann eigenvalues and
eigenfunctions, necessarily we have that |Ωε \ Ω0|

ε→0−→ 0.

4. Distance convergence of the domains

In this section we will provide an answer to question (Q2) and, as a matter
of fact, we will see that the answer is No. We will prove this by constructing an
example of a fixed domain Ω0 and a sequence of domains Ωε with Ω0 ⊂ Ωε with
the property that dist(Ωε,Ω0) does not converges to 0, but the eigenvalues and
eigenfunctions of the Laplace operator with Neumann boundary conditions in
Ωε converge to the ones in Ω0, see Definition 2.1.

As a matter of fact in [3, Section 5.2] a very particular example of a dumbbell
domain (two disconnected domains joined by a thin channell) is provided so
that the eigenvalues from the dumbbell converge to the eigenvalues of the
two disconnected domains and no spectral contribution from the channel is
observed. In this note we will obtain a family of channels for which the same
phenomena occurs, see Corollary 4.4, and will provide a proof, different from
the one given in [3].

Let us consider a fixed domain Ω0 ⊂ RN which satisfies that Ω0 ⊂ {x ∈
RN , x1 < 0} and such that

Ω0 ∩ {x = (x1, x
′) ∈ R× RN−1,−1 < x1 < 1, |x′| ≤ ρ}

= {x = (x1, x
′) ∈ R× RN−1,−1 < x1 < 0, |x′| ≤ ρ}

for some fixed ρ > 0.
We will construct Ωε as Ωε =int(Ω̄0 ∪ R̄ε), where Rε is given as follows

Rε = {(x1, x
′) ∈ R× RN−1 : 0 < x1 < L, |x′| < gε(x1)} (4.1)
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where the function gε will be chosen so that gε > 0, gε ∈ C1([0, L]) and
gε → 0 uniformly on [0, L], see Figure 1. For the sake of notation we denote
by Γε0 = ∂Rε ∩ {x1 = 0} and ΓεL = ∂Rε ∩ {x1 = L}.

x'

g ( )x

x1

1ε

L0

Figure 1. The exterior perturbation Rε. The thick line refers
to the supplementary Dirichlet condition in the problem (4.2),
while Neumann boundary conditions are imposed elsewhere.

We refer to [12] for a general reference on the behavior of solutions of partial
differential equations on thin domains. See also the recent survey [7] for a
study on the spectrum of the Laplacian on thin tubes in various settings, and
for many related references.

Observe that if L is fixed then dist(Ωε,Ω0) = L for each 0 < ε ≤ ε0.
Moreover we will show that for certain choices of gε we obtain the spectral
convergence of the Laplace operator. To prove this results, we use Proposition
2.2 and show that τε → +∞. Notice that τε, defined in (2.1) is the first
eigenvalue of 

−∆u = τu , Rε ,

u = 0 , Γε0 ,
∂u

∂n
= 0 , ∂Rε \ Γε0 .

(4.2)
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Since we have Neumann boundary conditions on the lateral boundary of Rε,
there clearly exist profiles of gε for which τε remains uniformly bounded as
ε → 0. In fact, a simple trial-function argument shows that τε ≤ π2/(2L)2

whenever gε(s) ≥ gε(0) for every s ∈ [0, L]. The idea to get τε → +∞ consists
in choosing a rapidly decreasing function s 7→ gε(s), which enables one to
get a large contribution to τε coming from the longitudinal energy due to the
approaching Dirichlet and Neumann boundary conditions in the limit ε → 0.
Let us notice that a similar trick to employ the repulsive contribution of such
a combination of the boundary conditions have been used recently in [10] to
establish a Hardy-type inequality in a waveguide; see also [11] for eigenvalue
asymptotics in narrow curved strips with combined Dirichlet and Neumann
boundary conditions. In our case, we are able to show

Proposition 4.1. With the notations above, for any function γ ∈ C2([0, L])
satisfying

0 < α0 ≤ γ ≤ α1 < 1, γ̇(L) ≤ 0, and γ̈ ≥ α2 > 0 (4.3)

for some positive numbers α0, α1 and α2, if we define gε = γ1/ε we have that
τε

ε→0−→ 0.
In particular, applying Proposition 2.2 we obtain the convergence of the

eigenvalues and eigenfunctions of the Neumann Laplacian in Ωε to the ones in
Ω0.

Remark 4.2. Observe that a function γ satisfying (4.3) necessarily satisfies
that γ̇(s) < 0 for 0 ≤ s < L. Hence, the function γ is decreasing.

Proof: Since τε is given by minimization of the Rayleigh quotient,

τε = inf
φ∈H1(Rε)

φ=0 in Γε0

∫
Rε

|∇φ|2∫
Rε

|φ|2

we analyze the integral
∫
Rε
|∇φ|2 for a smooth real-valued function φ with

φ = 0 in a neighborhood of Γε0. We have∫
Rε

|∇φ|2 =
∫ L

0

∫
|x′|<gε(x1)

(|φx1 |2 + |∇x′φ|2) dx′dx1

Considering the change of variables x1 = y1, x′ = gε(y1)y′ which transforms
(x1, x

′) ∈ Rε into (y1, y
′) ∈ Q where Q is the cylinder Q = {(y1, y

′) : 0 <
y1 < L, |y′| < 1} and performing this change of variables in the integral above,
elementary calculations show that∫

Rε

|∇φ|2 =
∫
Q

(ϕy1 −
ġε
gε

N∑
i=2

yiϕyi

)2

+
1
g2
ε

N∑
i=2

|ϕyi |2
 gN−1

ε dy

where ϕ(y) = φ
(
y1, gε(y1)y′

)
.
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Writing the above expression in terms of the new function ψ(y) = gε(y1)
N−1

2 ϕ(y)
so that

g(N−1)/2
ε ϕyi = ψyi , i = 2, . . . , N ,

g(N−1)/2
ε ϕy1 = −N − 1

2
ġε
gε
ψ + ψy1 ,

we get,∫
Rε

|∇φ|2

=
∫
Q

(−N − 1
2

ġε
gε
ψ + ψy1 −

ġε
gε

N∑
i=2

yiψyi

)2

+
1
g2
ε

N∑
i=2

|ψyi |2
 dy

=
∫
Q

[(
−N − 1

2
ġε
gε
ψ

)2

+

(
ψy1 −

ġε
gε

N∑
i=2

yiψyi

)2

− (N − 1)
ġε
gε
ψψy1

+(N − 1)
ġ2
ε

g2
ε

N∑
i=2

yiψyiψ +
1
g2
ε

N∑
i=2

|ψyi |2
]
dy

≥
∫
Q

[(
N − 1

2

)2
ġ2
ε

g2
ε

ψ2 − (N − 1)
ġε
gε
ψψy1

+ (N − 1)
ġ2

g2
ε

N∑
i=2

yiψyiψ +
1
g2
ε

N∑
i=2

ψ2
yi

]
dy

where we have used that (ψy1 −
∑N
i=2 yiψyi

ġε
gε

)2 ≥ 0. Via integration by parts
in the second and third term above, we get,∫

Q

−(N − 1)
ġε
gε
ψψy1dy =

∫
|y′|<1

∫ L

0

−(N − 1)
ġε
2gε

(ψ2)y1dy1dy
′

=
∫
|y′|<1

(
−
[
(N − 1)

ġε
2gε

ψ2

]y1=L

y1=0

+
∫ L

0

(N − 1)
(
ġε
2gε

)′
ψ2dy1

)
dy′

= −
∫
|y′|<1

(N − 1)
ġε(L)
2gε(L)

ψ2(L, y′)dy′ +
∫
Q

N − 1
2

(
g̈ε
gε
− ġ2

ε

g2
ε

)
ψ2dy

and

∫
Q

(N − 1)
ġ2
ε

g2
ε

N∑
i=2

yiψyiψdy =
∫ L

0

(N − 1)
ġ2
ε

g2
ε

N∑
i=2

∫
|y′|<1

yi
1
2

(ψ2)yidy
′dy1

=
∫ L

0

N − 1
2

ġ2
ε

g2
ε

(∫
|y′|=1

ψ2 − (N − 1)
∫
|y′|<1

ψ2dy′

)
dy1 .
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Hence if we require that ġε(L) ≤ 0, we have,∫
Rε

|∇φ|2 ≥
∫
Q

[
N − 1

2
g̈ε
gε
−

((
N − 1

2

)2

+
N − 1

2

)
ġ2
ε

g2
ε

]
ψ2dy

+
∫ L

0

N − 1
2

ġ2
ε

g2
ε

(∫
|y′|=1

ψ2dy′

)
dy1 +

∫
Q

1
g2
ε

N∑
i=2

ψ2
yidy .

(4.4)

The last two terms in this expression can be written as∫ L

0

1
g2
ε (y1)

(∫
|y′|≤1

|∇y′ψ|2 +
N − 1

2
ġ2
ε (y1)

∫
|y′|=1

ψ2

)
dy1

and we have that∫
|y′|≤1

|∇y′ψ|2 +
N − 1

2
ġ2
ε

∫
|y′|=1

ψ2 ≥ ρ
∫
|y′|≤1

ψ2

with ρ = ρ(y1) being the first eigenvalue of the problem
−∆y′ψ = ρψ , |y′| < 1 ,

∂ψ

∂n
+
N − 1

2
ġ2
ε (y1)ψ = 0 , |y′| = 1 ,

where n denotes the outward unit normal vector field to the (N−2) dimensional
unit sphere S1 = {y′ ∈ RN−1 : |y′| = 1}.

We claim that if we denote by λ(η) the first eigenvalue of
−∆y′ψ = λψ , |y′| < 1 ,

∂ψ

∂n
+ ηψ = 0 , |y′| = 1 ,

we have that λ(η)
η → |S1|

|B1| as η → 0, where B1 is the (N − 1) dimensional unit
ball and S1 its surface, which satisfy |S1| = (N − 1)|B1|. As a matter of fact
by standard continuity result we know that λ(η) → 0 and its eigenfunction
ψη, which is radially symmetric, converges to the constant function 1/

√
|B1|,

which is the first eigenfunction of the Neumann eigenvalue problem. But

λ(η) =
∫
B1

|∇y′ψη|2 + η

∫
S1

|ψη|2 ≥ η
∫
S1

|ψη|2

which implies that
λ(η)
η
≥
∫
S1

|ψη|2 →
|S1|
|B1|

.

Moreover, using ψ = 1/
√
|B1| as a test function in the Rayleigh quotient

for λ(η), we immediately obtain λ(η) ≤ η |S1|
|B1| . This proves our claim. In

particular, given δ > 0 small, we can choose η0 = η0(δ) such that λ(η) >
(N − 1− δ)η for 0 < η ≤ η0.

Therefore, if we choose the function gε such that ġε(y1) → 0 uniformly in
y1 ∈ [0, L], we have that ρ(y1) ≥ (N−1)(N−1−δ)

2 ġε
2(y1) for ε small enough.
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Hence,∫
Rε

|∇φ|2 ≥
∫
Q

{
N − 1

2
g̈ε
gε
−
[(

N − 1
2

)2

− (N − 1)(N − 1− δ)
2

+
N − 1

2

]
ġε

2

g2
ε

}
ψ2dy

=
N − 1

2

∫
Q

{
g̈ε
gε
−
[
N − 1

2
− (N − 1− δ) + 1

]
ġ2
ε

g2
ε

}
ψ2dy

and observe that the number κ = N−1
2 − (N − 1 − δ) + 1 is strictly less than

one for all values of N ≥ 2 choosing a fixed and small δ > 0. If we denote by

mε = inf
0≤y1≤L

(
g̈ε
gε
− κ ġ

2
ε

g2
ε

)
then ∫

Rε

|∇φ|2 ≥ N − 1
2

mε

∫
Q

ψ2 =
N − 1

2
mε

∫
Rε

φ2 .

Consequently, τε ≥ N−1
2 mε.

Let us see that we can make a choice of the family of functions gε, satisfying
the two previous conditions we have imposed, that is ġε(L) ≤ 0 and ġε(y1)→ 0
uniformly in 0 ≤ y1 ≤ L such that mε → +∞ as ε→ 0.

Let us choose a function γ ∈ C2([0, L]) satisfying (4.3) and let gε = γ1/ε.
Then, we have

ġε =
1
ε
γ

1
ε−1γ̇ , g̈ε =

1
ε

(
1
ε
− 1)γ

1
ε−2γ̇2 +

1
ε
γ

1
ε−1γ̈ ,

and simple calculations show that

g̈ε
gε
− κ ġ

2
ε

g2
ε

=

[
1
ε

(
1
ε
− 1)− κ

(
1
ε

)2
](

γ̇

γ

)2

+
γ̈

εγ
≥ α2

α0

1
ε

for ε > 0 small enough so that 1
ε ( 1
ε − 1) − κ

(
1
ε

)2 ≥ 0 . This shows that
mε → +∞ and it proves the proposition.

Remark 4.3. Now that we have been able to construct a thin domain Rε as
in (4.1) such that τε

ε→0−→ +∞, we can construct another thin domain R̃ε such
that its “length” goes to infinity, its width goes to zero and still τ̃ε

ε→0−→ +∞,
where τ̃ε is the first eigenvalue of (4.2) in R̃ε instead of Rε.

For this, let Rε be a thin domain constructed as in Proposition 4.1 and let
ρε be a sequence with ρε → +∞ such that τε

ρ2
ε
→ +∞ and α

1/ε
1 ρε → 0. Define

R̃ε = ρεRε, that is

R̃ε = {(x1, x
′) : 0 < x1 < ρεL, |x′| < ρεgε(x1)} ,

then 0 < ρεgε(x1) ≤ α1/ε
1 ρε

ε→0−→ 0 and τ̃ε = τε
ρ2
ε

ε→0−→ +∞.

Observe that if we require also a Dirichlet boundary condtion in ΓεL, we can
relax the conditions on γ in Proposition 4.1 and in particular the condition
γ̇(L) ≤ 0 can be dropped. Hence, we can show,
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Corollary 4.4. With the notations above, for any function γ ∈ C2([0, L])
satisfying

0 < α0 ≤ γ ≤ α1 < 1, and γ̈ ≥ α2 > 0
for some positive numbers α0, α1 and α2, if we define gε = γ1/ε we have that
τ̃ε

ε→0−→ 0, where τ̃ ε is the first eigenvalue of
−∆u = τu , Rε ,

u = 0 , Γε0 ∪ ΓεL ,
∂u

∂n
= 0 , ∂Rε \ (Γε0 ∪ ΓεL) .

Proof: This follows easily by a Neumann bracketing argument. More pre-
cisely, from the hypotheses, γ̇ is a strictly increasing function. Hence, either
γ is strictly monotone in (0, L), or there exists a unique L∗ ∈ (0, L) such that
γ̇(L∗) = 0.

In the first case, if γ is decreasing (respectively increasing) we substitute the
Dirichlet boundary condition at ΓεL (respectively at Γε0) by a Neumann one.
Then the new eigenvalue problem gives rise to τε defined exactly in the same
way as (4.2) (modulo possibly a mirroring of Rε) and we have τ̃ε ≥ τε → +∞
as ε→ 0.

In the second case, we cut the domain Rε in two domains R0
ε = Rε ∩ {0 <

x1 < L∗}, R1
ε = Rε ∩ {L∗ < x1 < L}. We know that τ̃ε ≥ inf{τ0

ε , τ
1
ε }, where

τ0
ε and τ1

ε are the corresponding eigenvalues in R0
ε and R1

ε with a Neumann
boundary condition imposed at the newly created boundary Rε ∩ {x1 = L∗}
on both domains. In both domains we can apply Proposition 4.1 as in the first
case so that τ0

ε , τ
1
ε
ε→0−→ +∞, which implies τ̃ε → 0.

Remark 4.5. This corollary recovers and generalizes the results from Sec-
tion 5.2 in [3].
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